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Abstract
The Perk–Schultz model may be expressed in terms of the solution of the Yang–
Baxter equation associated with the fundamental representation of the untwisted
affine extension of the general linear quantum superalgebra Uq[gl(m|n)], with
a multiparametric coproduct action as given by Reshetikhin. Here, we present
analogous explicit expressions for solutions of the Yang–Baxter equation
associated with the fundamental representations of the twisted and untwisted
affine extensions of the orthosymplectic quantum superalgebras Uq[osp(m|n)].
In this manner, we obtain generalizations of the Perk–Schultz model.

PACS numbers: 02.20.Uw, 02.30.Ik

1. Introduction

The Perk–Schultz model [1, 2] is well known to be exactly solvable [3]. For fixed d > 1, the
model is defined on a square lattice where each edge can occupy one of d states. In addition
to the spectral parameter, the model depends on 1 + d(d − 1)/2 continuous variables and d
discrete variables which have value ±1. One method to formulate the model and obtain the
exact solution is through the R-matrix associated with the fundamental representation of the
quantized untwisted affine general linear superalgebra Uq[gl(m|n)(1)] [4]. The exact solution
follows from the fact that the R-matrix satisfies the Yang–Baxter equation. In this setting,
the continuous variables are given by the deformation parameter q, as well as d(d − 1)/2
variables associated with the Reshetikhin twist [4, 5] on the co-algebra structure. The discrete
variables are associated with the Z2-grading of the d-dimensional vector space which affords
the representation of the Uq[gl(m|n)(1)] superalgebra, where m + n = d.

Here, we report the extension of this result to the case of the quantized untwisted affine
superalgebra Uq[osp(m|n)(1)] and the twisted case Uq[sl(m|n)(2)] where n = 2k is even in
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both instances. In this manner, we obtain models which are of the Perk–Schultz type in the
sense that they also depend on several discrete and continuous variables besides the spectral
parameter. We emphasize, however, that these new models do not reduce to the Perk–Schultz
model in a particular limit. A representation theoretic approach is adopted to find R-matrices
satisfying the Z2-graded Yang–Baxter equation (YBE)

R12(z)R13(zw)R23(w) = R23(w)R13(zw)R12(z)

where R(z) ∈ End(V (δ1) ⊗ V (δ1)) and V (δ1) is the (m + n)-dimensional space for the
vector representation of Uq[osp(m|n)] of highest weight δ1. The multiplication on the tensor
product space is Z2-graded (see equation (1) in the following section). The construction of
R-matrices satisfying the Z2-graded YBE for the general case V (λa) ⊗ V (λb) (where λa, λb

are the highest weights of the modules) has been delineated in [6, 7]. In those works, the
solutions are presented in general terms as a linear combination of elementary intertwiners,
where the coefficients are determined through tensor product graph methods. However, to
have fully complete expressions it is necessary to determine also the form of the Uq[osp(m|n)]
invariant intertwiners which project out the submodules in the tensor product decomposition.
Here, we will explicitly formulate R-matrices for the case V (δ1) ⊗ V (δ1) for Uq[osp(m|n)] ,
in both the twisted and untwisted cases by explicitly computing the elementary intertwiners.
We mention that formal expressions for the solutions of the Yang–Baxter equation associated
with fundamental representations of superalgebras are given in [8], which may also be used
to determine explicit expressions for the R-matrices (e.g., [9]). An alternative approach is to
use the Lax operator method as described in [10, 11].

Once the explicit R-matrices have been obtained, we will introduce the Reshetikhin twist
[5] in order to generate more general R-matrices with additional free parameters. These results
can be used to obtain classes of integrable Hamiltonians describing systems of interacting
fermions, with potential applications in condensed matter systems (cf [12]).

2. The quantized orthosymplectic superalgebra Uq[osp(m|n)]

The quantum superalgebra Uq[osp(m|n)] is a q-deformation of the classical orthosymplectic
superalgebra. A brief explanation of Uq[osp(m|n)] is given below, with more details to be
found in [10]. Throughout we use n = 2k and l = �m

2 �, so m = 2l or m = 2l + 1.
First, we need to define the notation. The grading of a is denoted by [a], where

[a] =
{

0, a = i, 1 � i � m,

1, a = µ, 1 � µ � n.

We also use the symbols a and ξa , which are defined by

a =
{
m + 1 − a, [a] = 0,

n + 1 − a, [a] = 1
and ξa =

{
1, [a] = 0,

(−1)a, [a] = 1.

As a weight system for Uq[osp(m|n)] we take the set {εi, 1 � i � m}∪ {δµ, 1 � µ � n},
where εi = −εi and δµ = −δµ. Conveniently, when m = 2l +1 this implies εl+1 = −εl+1 = 0.
Acting on these weights, we have the invariant bilinear form defined by

(εi, εj ) = δi
j , (δµ, δν) = −δµ

ν , (εi, δµ) = 0, 1 � i, j � l, 1 � µ, ν � k.

The even positive roots of Uq[osp(m|n)] are composed entirely of the usual positive roots
of o(m) together with those of sp(n), namely,

εi ± εj , 1 � i < j � l,

εi, 1 � i � l when m = 2l + 1,

δµ + δν, 1 � µ, ν � k,

δµ − δν, 1 � µ < ν � k.
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The root system also contains a set of odd positive roots, which are

δµ + εi, 1 � µ � k, 1 � i � m.

Throughout this paper, we choose to use the following set of simple roots:

αi = εi − εi+1, 1 � i < l,

αl =
{
εl + εl−1, m = 2l,

εl, m = 2l + 1,

αµ = δµ − δµ+1, 1 � µ < k,

αs = δk − ε1 .

Note this choice is only valid for m > 2. Also observe that the graded half-sum of positive
roots is given by

ρ = 1

2

l∑
i=1

(m − 2i)εi +
1

2

k∑
µ=1

(n − m + 2 − 2µ)δµ.

In Uq[osp(m|n)], the graded commutator is realized by

[A,B] = AB − (−1)[A][B]BA

and tensor product multiplication is given by

(A ⊗ B)(C ⊗ D) = (−1)[B][C](AC ⊗ BD). (1)

Using these conventions, the quantum superalgebra Uq[osp(m|n)] is generated by simple
generators ea, fa, ha subject to relations including

[ha, eb] = (αa, αb)eb, [ha, fb] = −(αa, αb)fb, [ha, hb] = 0,

[ea, fb] = δa
b

(qha − q−ha )

(q − q−1)
, [es, es] = [fs, fs] = 0.

We remark that Uq[osp(m|n)] has the structure of a quasi-triangular Hopf superalgebra.
In particular, there is a superalgebra homomorphism known as the coproduct, � :
Uq[osp(m|n)] → Uq[osp(m|n)]⊗2, which is defined on the simple generators by

�(ea) = q
1
2 ha ⊗ ea + ea ⊗ q− 1

2 ha ,

�(fa) = q
1
2 ha ⊗ fa + fa ⊗ q− 1

2 ha ,

�
(
q± 1

2 ha
) = q± 1

2 ha ⊗ q± 1
2 ha .

Also, Uq[osp(m|n)] contains a universal R-matrix which satisfies, among other properties,
the Yang–Baxter equation

R12R13R23 = R23R13R12.

Here, Rab represents a copy of R acting on the a and b components respectively of U ⊗U ⊗U ,
where each U is a copy of the quantum superalgebra Uq[osp(m|n)].

Now let EndV be the space of endomorphisms of V , an (m + n)-dimensional vector
space. Then, the irreducible vector representation π : Uq[osp(m|n)] → End V acts on the
Uq[osp(m|n)] generators as given in table 1, where Ea

b is the elementary matrix with a 1 in
the (a, b) position and zeros elsewhere.

The solutions to the Yang–Baxter equation in a given representation of Uq[osp(m|n)]
can sometimes be extended to solutions of the spectral-parameter-dependent Yang–Baxter
equation

R12(z)R13(zw)R23(w) = R23(w)R13(zw)R12(z)
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Table 1. The action of the vector representation π on the simple generators of Uq [osp(m|n)].

αa π(ea) π(fa) π(ha)

αi , 1 � i < l Ei
i+1 − Ei+1

i
Ei+1

i − Ei

i+1
Ei

i − Ei

i
− Ei+1

i+1 + Ei+1
i+1

αl, m = 2l El−1
l

− El

l−1
El

l−1 − El−1
l El−1

l−1 + El
l − El−1

l−1
− El

l

αl , m = 2l + 1 El
l+1 − El+1

l
El+1

l − El
l+1 El

l − El

l

αµ, 1 � µ < k E
µ
µ+1 + E

µ+1
µ E

µ+1
µ + E

µ

µ+1
E

µ+1
µ+1 − E

µ+1
µ+1

− E
µ
µ + E

µ
µ

αs E
µ=k
i=1 + (−1)kEi=1

µ=k
−Ei=1

µ=k + (−1)kE
µ=k

i=1
−Ei=1

i=1 + Ei=1
i=1

− E
µ=k
µ=k + E

µ=k

µ=k

in the affine extensions Uq[osp(m|n)(1)] and Uq[sl(m|n)(2)]. Even though the above is a
Z2-graded matrix equation, it is possible to redefine the matrix elements in such a way that
the solution satisfies the non-graded Yang–Baxter equation [6]. In the following sections, we
construct such solutions for the case of the vector representation.

3. Determination of the R-matrices

The tensor product of the vector module with itself decomposes into Uq[osp(m|n)] modules
according to

V (δ1) ⊗ V (δ1) = V (2δ1) ⊕ V (δ1 + δ2) ⊕ V (0̇)

except in the case m = n, in which case the last two irreducible modules combine to form an
indecomposable V . Let

PV =
{
V (δ1 + δ2) ⊕ V (0̇) for m �= n

V indecomposable for m = n.

Then, we have a resolution of the identity as follows:

I = P2δ1 + PV .

Define Ř(z) = PR(z) where P = ∑
a,b(−1)[b]ea

b ⊗eb
a is the graded permutation operator.

Then, the Yang–Baxter equation may be rewritten as

Ř12(z)Ř23(zw)Ř12(w) = Ř23(w)Ř12(zw)Ř23(z).

From [6, 7], it is known that

Ř =
∑

a

ρa(z)Pa (2)

where Pa denotes the Uq[osp(m|n)] invariant projection operator onto the submodule V (a).
The coefficients ρa(z) are determined using

ρa(z) =
〈
C(a′) − C(a)

2

〉
εaεa′

ρa′(z) (3)

where

〈x〉± = 1 ± zqx

z ± qx

provided the weights a, a′ label adjacent vertices in the tensor product graph [6, 7]. Here,
C(a) denotes the eigenvalue of the second-order Casimir invariant on V (a) and εa the parity



Letter to the Editor L21

0

+

δ1 + δ2 2δ1

+ -

Figure 1. The untwisted tensor product graph.

0

+

δ1 + δ22δ1

- +

Figure 2. The twisted tensor product graph.

of the vertex associated with a. For Uq[osp(m|n)(1)], the tensor product graph is depicted in
figure 1 while the tensor product graph for Uq[sl(m|n)(2)] is given in figure 2.

Let ψ denote the (unnormalized) basis vector for the identity module V (0̇). Explicitly,

ψ = ψ0 + ψ1

where

ψ0 =
m∑

i=1

q−(ρ,εi )wi ⊗ wi

and

ψ1 =
n∑

µ=1

−(1)µq−(ρ,δµ)wµ ⊗ wµ.

From equations (2) and (3), we find that for Uq[osp(m|n)(1)] the required R-matrix is

Ř(z) = P2δ1 +
1 − zq−2

z − q−2
Pδ1+δ2 +

(
1 − zqm−n−2

z − qm−n−2

)
P0 (4)

where

P0 = 1

1 − [n + 1 − m]q
|ψ〉〈ψ |

and [k]q = qk−q−k

q−q−1 . For Uq[sl(m|n)(2)], we obtain the analogous result

Ř = P2δ1 +
1 − zq−2

z − q−2
Pδ1+δ2 +

(
1 + zqm−n

z + qm−n

) (
1 − zq−2

z − q−2

)
P0. (5)

Note that in equations (4, 5) P0 is not defined for m = n. To avoid having to make separate
calculations, define

Q = (q − q−1)q−1

(qm−n−2 + 1)
|ψ〉〈ψ |

= (1 − qn−m)Po.

Then, Ř(z) can be written (and renormalized) as

Ř(z) = z − q−2

1 − zq−2
P2δ1 + Pδ1+δ2 +

(
z − q−2

1 − zq−2

)(
1 − zqm−n−2

z − qm−n−2

)
P0

= (1 + q−2)(z − 1)

1 − zq−2
P2δ1 + I +

(z2 − 1)

(zq−2 − 1)(zqn−m+2 − 1)
Q
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for Uq[osp(m|n)(1)] and

Ř(z) = z − q−2

1 − zq−2
P2δ1 + Pδ1+δ2 +

1 + zqm−n

z + qm−n
P0

= (1 + q−2)(z − 1)

1 − zq−2
P2δ1 + I +

(z − 1)qm−n

z + qm−n
Q

for Uq[sl(m|n)(2)].
In order to obtain explicit expressions for the R-matrices, it remains to determine the

operator P2δ1 . First, we find the following orthogonal basis vectors for V (2δ1):

q−1/2wi ⊗ wj − q1/2wj ⊗ wi, wµ ⊗ wµ,

q−1/2wµ ⊗ wν + q1/2wν ⊗ wµ, q1/2wi ⊗ wµ − q−1/2wµ ⊗ wi,

where 1 � µ < ν �= µ � n and 1 � i < j �= i � n. The zero-weight vectors are given by the
following:

vi = wi ⊗ wi − wi ⊗ wi − q−1wi+1 ⊗ wi+1 + qwi+1 ⊗ wi+1, 1 � i < l

vs = q−1w1 ⊗ w1 − qw1 ⊗ w1 + (−1)k(q−1wk ⊗ wk + qwk ⊗ wk)

vµ = (−1)µ(q−1wµ ⊗ wµ + qwµ ⊗ wµ + wµ+1 ⊗ wµ+1 + wµ+1 ⊗ wµ+1), 1 � µ < k

vl = wl ⊗ wl − wl ⊗ wl +

{
0, m = 2l

(q1/2 − q−1/2)wl+1 ⊗ wl+1, m = 2l + 1.

These, however, are not orthogonal. Instead, we complete an orthogonal dual basis for V (2δ1)

with the following orthogonal zero-weight dual vectors:

vi = ṽi +
Dl−i[k]q

(q + q−1)Dl−k

�, 1 � i � l,

vµ = ṽµ +
[µ]Dl

(q + q−1)Dl−k

�, 1 � µ < k,

vs = [k]Dl

(q + q−1)Dl−k

�,

where

ṽi = 1

(q + q−1)Dl


[i]q

l∑
j�i

Dl−j vj + Dl−i

∑
j<i

[j ]qvj


 ,

ṽµ = −1

(q + q−1)[k]q


[µ]q

k−1∑
ν�µ

[k − ν]qvν + [k − µ]q
∑
ν<µ

[ν]qvν




and

Dx =




qx−1 + qx−l

q + q−1
, m = 2l

qx−1/2 + q1/2−x

q1/2 + q−1/2
, m = 2l + 1


 = qx+ m

2 −l−1 + ql+1−x− m
2

q
m
2 −l−1 + ql+1− m

2
.

It is convenient at this point to introduce the braid generator, σ :

σ = q−1Ř(0) = (q + q−1)P2δ1 − qI +
(q − q−1)

qm−n−2 + 1
|ψ〉〈ψ |.
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Note that Ř(0) is the same for both Uq[osp(m|n)] and Uq[sl(m|n)(2)]. After calculating P2δ1

and |ψ〉〈ψ |, we find this explicit expression for the braid generator σ :

σ = −
∑

a �=b,b̄

(−1)Ea
b ⊗ Eb

a −
∑

a

(−1)[a]q(εa,εa)Ea
a ⊗ Ea

a

+ (q − q−1)




l∑
i=1


 ∑

i�j�ī

q−(ρ,εi+εj )Ei
j ⊗ Eī

j̄
+

∑
i<j<ī

q−(ρ,εi+εj )E
j

i ⊗ E
j̄

ī




−
∑

µ�ν�µ̄

(−1)µ+νq−(ρ,δµ+δν )Eµ
ν ⊗ E

µ̄
ν̄ −

∑
µ<ν<µ̄

(−1)µ+νq−(ρ,δµ+δν )Eν
µ ⊗ Eν̄

µ̄

+
k∑

µ=1

m∑
i=1

(−1)µq−(ρ,εi+δµ)
(
Ei

µ ⊗ Eī
µ̄ + E

µ

i ⊗ E
µ̄

ī

)

− (q − q−1)




m∑
i<j

Ei
i ⊗ E

j

j +
n∑

µ<ν

Eµ
µ ⊗ Eν

ν +
m∑

i=1

k∑
µ=1

(
Ei

i ⊗ E
µ̄
µ̄ + Eµ

µ ⊗ Ei
i

)
−

l∑
i=1

(
qEi

ī
⊗ Eī

i + q−1Eī
i ⊗ Ei

ī

)
+

k∑
µ=1

(
q−1E

µ
µ̄ ⊗ Eµ̄

µ + qEµ̄
µ ⊗ E

µ
µ̄

)
.

Recall the relation R(z) = P Ř(z). If we substitute into the previous equation and
simplify, we obtain an expression for the R-matrices in the zero spectral parameter limit which
we will denote by R′:

q−1R′ = −
∑

a �=b,b̄

Eb
b ⊗ Ea

a −
∑

a

q(εa,εa)Ea
a ⊗ Ea

a

− q−1
l∑

i=1

(
Ei

i ⊗ Eī
ī

+ Eī
ī
⊗ Ei

i

) − q

k∑
µ=1

(
Eµ

µ ⊗ E
µ̄
µ̄ + E

µ̄
µ̄ ⊗ Eµ

µ

)

− (q − q−1)




m∑
i>j

Ei
j ⊗ σ̂

j

i −
n∑

µ>ν

Eµ
ν ⊗ σ̂ ν

µ +
m∑

i=1

k∑
µ=1

(
E

µ̄

i ⊗ σ̂ i
µ − Ei

µ ⊗ σ̂
µ

i

)
where

σ̂ a
b = Ea

b − (−1)[a]([a]+)ξaξbq
(ρ,εb−εa)Eb̄

ā

and

σ̂ a
a = q1/2(εa,εa)Ea

a − q−1/2(εa ,εa)Eā
ā .

This equation simplifies further to give

q−1R′ = −I − (q1/2 − q−1/2)
∑

a

(−1)[a]Ea
a ⊗ σ̂ a

a

− (q − q−1)




m∑
i>j

Ei
j ⊗ σ̂

j

i −
n∑

µ>ν

Eµ
ν ⊗ σ̂ ν

µ +
k∑

µ=1

m∑
i=1

(
E

µ̄

i ⊗ σ̂ i
µ̄ − Ei

µ ⊗ σ̂
µ

i

) .

We now rewrite Ř(z) for Uq[osp(m|n)(1)] in terms of the braid generator σ .

Ř(z) = 1

(q − q−1z)

{
(z − 1)σ + (q − q−1)zI − (q − q−1)z(z − 1)

(z − qm−n−2)
|ψ〉〈ψ |

}
.
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Using equation (3), we can determine the normalized R-matrices as follows:

R(z) = 1

(q − q−1z)

{
(z − 1)q−1R′ + (q − q−1)zP − (q − q−1)z(z − 1)

(z − qm−n−2)
P |ψ〉〈ψ |

}
.

Explicit calculation gives the following expansion for R(z) in the untwisted case:

R(z) = (q − q−1)zP

(q − q−1z)
− (q − q−1)z(z − 1)

(q − q−1z)(z − qm−n−2)

∑
a,b

(−1)[a]ξaξbq
(ρ,εa−εb)Ea

b ⊗ Eā
b̄

− (z − 1)

(q − q−1z)

{
I + (q1/2 − q−1/2)

∑
a

(−1)[a]Ea
a ⊗ σ̂ a

a

+ (q − q−1)
∑
εa<εb

(−1)Ea
b ⊗ σ̂ b

a

}
.

Similarly, for Uq[sl(m|n)(2)] we obtain

R(z) = (q − q−1)zP

(q − q−1z)
− (q − q−1)z(z − 1)

(q − q−1z)(z + qm−n)

∑
a,b

(−1)[a]ξaξbq
(ρ,εa−εb)Ea

b ⊗ Eā
b̄

− (z − 1)

(q − q−1z)

{
I + (q1/2 − q−1/2)

∑
a

(−1)[a]Ea
a ⊗ σ̂ a

a

+ (q − q−1)
∑
εa<εb

(−1)Ea
b ⊗ σ̂ b

a

}
.

We comment that although the above derivation only holds for m > 2, the final result holds
for all m (see [10, 11]).

4. The Reshetikhin twist

Let (A,�,R) denote a quasi-triangular Hopf superalgebra where � and R denote the coproduct
and R-matrix, respectively. Consider an element F ∈ A ⊗ A satisfying the properties

(� ⊗ I )F = F13F23, (I ⊗ �)F = F13F12, F12F13F23 = F23F13F12.

Then (A,�F ,RF ) is also a quasi-triangular Hopf superalgebra with coproduct and R-matrix
given by

�F = F12�F−1
12 , RF = F21RF−1

21 .

We refer to F as a twist element. In particular, for the case of a quantized superalgebra Uq[g]
Reshetikhin [5] gave the example where F is given by

F = exp

[∑
b<c

(hb ⊗ hc − hc ⊗ hb)φbc

]

with {hb} the generators of the Cartan subalgebra of Uq[g] and φbc, b < c, arbitrary complex
parameters.
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Applying this twist to Ř(z), it is found that both Uq[osp(m|n)(1)] and Uq[sl(m|n)(2)]
are quasi-triangular Hopf superalgebras with coproduct �F as above and R-matrix in the
fundamental representation given by

RF (z) = (q − q−1)zP

(q − q−1z)
− (q − q−1)z(z − 1)

(q − q−1z)(z − qm−n−2)

∑
a,b

(−1)[a]ξaξbq
(ρ,εa−εb)Ea

b ⊗ Eā
b̄

− (z − 1)

(q − q−1z)

{(
I + (q1/2 − q−1/2)

∑
a

(−1)[a]Ea
a ⊗ σ̂ a

a

)

× exp

[∑
b<c

2(π(hc) ⊗ π(hb) − π(hb) ⊗ π(hc))φbc

]

+ (q − q−1)
∑
εa<εb

(−1)Ea
b ⊗ σ̂ b

a

}

for Uq[osp(m|n)(1)] and

RF (z) = (q − q−1)zP

(q − q−1z)
− (q − q−1)z(z − 1)

(q − q−1z)(z + qm−n)

∑
a,b

(−1)[a]ξaξbq
(ρ,εa−εb)Ea

b ⊗ Eā
b̄

− (z − 1)

(q − q−1z)

{(
I + (q1/2 − q−1/2)

∑
a

(−1)[a]Ea
a ⊗ σ̂ a

a

)

× exp

[∑
b<c

2(π(hc) ⊗ π(hb) − π(hb) ⊗ π(hc))φbc

]

+ (q − q−1)
∑
εa<εb

(−1)Ea
b ⊗ σ̂ b

a

}

for Uq[sl(m|n)(2)]. In the above formulae, the representations π(hb) are given in table 1. For
both cases, we have obtained models with (l + k)(l + k − 1)/2 continuous variables (the φab)
and m+n discrete variables (the grading terms (−1)[a]: note that there must be an even number
of indices a for which [a] = 1 and also that σ̂ a

b explicitly depend on them). These variables
are in addition to the spectral parameter z. Both models may be considered as generalizations
of the Perk–Schultz model.

Independently, similar results have been reported in [13].
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